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SOME GEOMETRICALLY NONLINEAR PROBLEMS OF DEFORMATION

OF INELASTIC PLATES AND SHALLOW SHELLS

UDC 539.37I. Yu. Tsvelodub

This paper considers geometrically nonlinear problems of deformation of elastoplastic shallow shells
and viscoelastoplastic plates where it is required to find kinematic loads for a given time interval
such that a shell (plate) acquires prescribed residual deflections after these loads are applied and then
removed. For some constraints, the correctness of the corresponding formulations (uniqueness of the
solution and its continuous dependence on the problem data) is shown and iterative solution methods
are justified.
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Papers [1–3] deal with the geometrically linear inverse problems of finding external loads that ensure the
required residual deformation (i.e., residual deflections) of a viscoelastoplastic or elastoplastic plate within a specified
time after unloading. In this paper, the results obtained in [1–3] are extended to the case of similar geometrically
nonlinear problems where the deflections can far exceed the thickness of the plate (shallow shell) but remain much
smaller than its dimensions in plan.

1. Constitutive Equations. We consider a shallow shell of variable (in the general case) thickness
h = h(x1, x2) whose middle surface is given by the equation z = Φ(x1, x2) in a chosen coordinate system Ox1x2z

and is projected onto the plane Ox1x2 in a region S bounded by a closed contour γ.
The total strains of the shell are given by [4]

εkl = 0.5(uk,l + ul,k)− æklw + 0.5w,kw,l − zw,kl,

ækl = −Φ,kl,
(1.1)

where uk are the displacements in the plane Ox1x2 and w is the deflection which is allowed to be much greater than
the thickness h but much smaller than the linear dimensions of the region S; the subscript k after comma denotes
differentiation with respect to xk. In (1.1) and below, we have k, l = 1, 2. [We note that relations (1.1) are valid in
an arbitrary Cartesian system Ox1x2 that is not necessarily related to the principal curvatures of the shell.]

The equilibrium of have the form [4]

Nkl,l + Xk = 0, Mkl,kl + Nkl(w,kl + ækl) + q = 0,

Nkl =

h/2∫
−h/2

σkl dz, Mkl =

h/2∫
−h/2

σklz dz, (1.2)

where σkl, Nkl, and Mkl are the stresses, membrane forces, and moments, respectively, q and Xk are the normal
and tangential components of the external load, respectively, and summation from 1 to 2 is implied for repeated
indices.
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Following [1–3], we assume that

εkl = aklmnσmn + εN
kl, (1.3)

where aklmn and εN
kl are the components of the tensors of elastic compliances and inelastic (plastic or viscoplastic)

strains, respectively.
The inverse problem of shell deformation can be generally formulated as follows [1, 2]: it is required to find

external kinematic or force actions in the time interval [0, t∗] such that after the external loads are applied and
then removed the shell acquires a specified residual deflection w̃∗ = w̃∗(x1, x2), i.e., a specified residual shape (since
|ũk∗| � |w̃∗|) at the time [0, t∗]. At t < 0, the shell is in its natural state. The cases t∗ = 0 and t∗ > 0 correspond to
the elastoplastic and viscoelastoplastic problems, respectively, which are considered below in a kinematic formulation
under the condition of instantaneous elastic unloading at t = t∗.

At any time t (0 ≤ t ≤ t∗), the deflection w can be written as (see [1–3])

w = we + w̃. (1.4)

Here we is the elastic “unbending,” i.e., the deflection which is a solution of the elastic problem for the current
external loads q = q(x1, x2, t) and Xk = Xk(x1, x2, t) and the corresponding boundary conditions on γ, and w̃ is
the current residual deflection after instantaneous removal of the indicated loads.

We assume that at the active deformation stage, i.e., before unloading, substantial inelastic strains εN
kl

have been accumulated, so that the quantity we is small compared to the residual deflection w̃: |we| � |w̃|.
Substituting (1.4) into (1.1) and ignoring the terms we

,kwe
,l, we obtain [5]

εkl = 0.5(uk,l + ul,k)− æklw + 0.5(w̃,kw,l + w̃,lw,k − w̃,kw̃,l)− zw,kl. (1.5)

Let us consider two states for which the residual deflections w̃(i) (i = 1, 2) differ only slightly from w̃, i.e.,
|w̃ − w̃(i)| � |w̃|. In this case, the strains ε

(i)
kl are determined by relations of the form of (1.5), in which uk and w

are replaced by u
(i)
k and w(i), respectively, and the differences ∆εkl = ε

(1)
kl − ε

(2)
kl are given by

∆εkl = 0.5(∆uk,l + ∆ul,k)− ækl∆w + 0.5(w̃,k∆w,l + w̃,l∆w,k)− z∆w,kl (1.6)

[the differences of the residual strains ∆ε̃kl also satisfy relations (1.6), where ∆w and ∆uk should be replaced by
∆w̃ and ∆ũk, respectively].

For the quantities ∆εkl from (1.6) and ∆σkl that satisfy the first two equations (1.2) (i.e., ∆Nkl,l+∆Xk = 0),
where ∆εkl and ∆σkl may not be related to one another, we evaluate the integral

I ≡ 1
2

∫
S

h/2∫
−h/2

∆εkl∆σkl dz dx1 dx2.

Performing calculations similar to those described in [5], for the geometrically nonlinear inverse relaxation
problem of plate bending, we obtain

I =
1
2

∫
γ

[
(∆uk + w̃,k∆w)∆pk +

(
∆Q +

∂∆H

∂s

)
∆w −∆G

∂∆w

∂n

]
ds

+
1
2

∫
S

[(∆uk + w̃,k∆w)∆Xk + ∆w∆q1] dx1 x2, (1.7)

−∆q1 ≡ ∆Mkl,kl + (w̃,kl + ækl)∆Nkl, ∆pk = ∆Nklnl,

∆H = ∆Mklnktl, ∆G = ∆Mklnknl, ∆Q = ∆Mkl,lnk,

where nk and tk are the components of the unit normal and tangential vectors to the contour γ, respectively.
By virtue of the assumptions adopted above, the deflections w(i) differ only slightly from w̃, which implies

that N
(i)
kl w

(i)
,kl ≈ N

(i)
kl w̃,kl. In this case, for the quantity ∆q1 defined in (1.7), from (1.2) we obtain

∆q1 ≈ ∆q. (1.8)
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By analogy with [1, 2], for the specified deflection-increment field ∆w = ∆w(x1, x2, t) with the known
residual deflection w̃, we introduce the norm

‖∆w‖2 =
1
2

∫
S

h/2∫
−h/2

bklmn ∆ε̄e
kl∆ε̄e

mn dz dx1 dx2 =
1
2

∫
S

h/2∫
−h/2

∆ε̄e
kl∆σ̄e

kl dz dx1 dx2, (1.9)

where bklmn are the components of the elastic-constant tensor inverse to aklmn.
The quantities ∆ε̄e

kl are related to ∆ūe
k by equations of the form of (1.6), where ∆ūe

k is a solution of the elastic
problem that includes the first two equations of (1.2) (∆N̄e

kl,l + ∆Xk = 0) for specified loads ∆Xk, the equalities
∆σ̄e

kl = bklmn ∆ε̄e
mn, and the corresponding conditions at γ (for ∆ūe

k or ∆p̄e
k = ∆N̄e

klnl). If the loads ∆Xk are
unknown, in addition to the quantities ∆w and w̃, it is necessary to specify the functions ∆uk = ∆uk(x1, x2, t). In
this case, ∆ūe

k = ∆uk and according to (1.6), we obtain ∆ε̄e
kl = ∆εkl.

One can see from (1.7) and (1.9) that ||∆w||2 is identical to the quantity I from (1.7), where the force
characteristics of the external actions are denoted with an overbar and the superscript e and ∆uk is replaced by
∆ūe

k.
2. Elastoplastic Problem. We consider the case where the quantities εN

kl from (1.3) are plastic strains εp
kl.

We assume that during active elastoplastic deformation, the shell deflection increases monotonically from zero to
the sought quantity w = w(x1, x2), which allows the deformation theory of plasticity to be used. The external loads
are removed instantaneously, i.e., elastic unloading occurs. Thus, t∗ = 0 and εN

kl ≡ εp
kl, and according to [3], we

have

εp
kl =

{
0, Σ < σT ,

λ0 ∂Σ/∂σkl, Σ ≥ σT ,
(2.1)

where Σ = Σ(σkl) is a homogeneous first-degree convex function, σT is the yield point, λ0 = λ0(Σ) > 0 is a specified
function such that λ′0(Σ) > 0 for a strain-hardening material, and λ0 is the undetermined factor for an ideal plastic
material (in this case, the second inequality in (2.1) is replaced by the equality Σ = σT ).

It follows from (2.1) that for any two states in both the plastic or elastic regions, the following inequality
holds:

∆εp
kl ∆σkl ≥ 0, (2.2)

where the equality sign occurs in the cases discussed in [3].
The residual deflection w̃ from (1.4) corresponds to the strains ε̃kl defined by (1.1), where w and uk are

replaced by w̃ and ũk, respectively. In this case, the following relations are satisfied [1, 3]:

εkl − ε̃kl = aklmnσe
mn, σe

mn ≡ σkl − ρkl. (2.3)

Here ρkl are the residual stresses in the shell after the removal of the external loads.
The problem is considered in the kinematic formulation: it is required to find a deflection w = w(x1, x2)

that ensures the specified residual deflection w̃ = w̃∗(x1, x2) after elastic unloading. The boundary conditions at γ

are given by w = ∂w/∂n = 0 (alternatively, one can specify other conditions that correspond to any of the four
possible versions given for the case of small deflections of a plate in [1, 3]) and uk = 0 (or pk ≡ Nklnl = 0). We note
that boundary conditions for the active loading stage may differ from those for unloading. If the external loads Xk

are unknown, the displacements uk = uk(x1, x2) need to be specified at the first stage (before unloading).
We assume that substantial plastic strains occur, i.e., |w− w̃∗| � |w̃∗|; therefore, the solution w = w(x1, x2)

is sought for in the neighborhood of the specified residual deflection w̃∗(x1, x2).
It can be shown that if a solution of this problem exists, it is unique in the same sense as in [3] under the

assumptions formulated above. Indeed, let v = {x | x = (x1, x2, z) ∈ R3, (x1, x2) ∈ S, |z| ≤ h/2}. Assuming that
two solutions exist and using the symbol ∆ to denote the corresponding differences, we evaluate the quantity

Ĩ ≡
∫
v

∆ε̃kl∆σkl dv.

Taking into account relations (1.7) (where it is necessary to set w̃ = w̃∗, ∆uk = ∆ũk, and ∆w = ∆w̃) and (1.8)
by virtue of the indicated boundary conditions on γ and using the fact that ∆w̃ = 0 everywhere in S, we find that
Ĩ = 0. From this, taking into account (1.3) and (2.3) and using the equality
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∫
v

aklmn ∆σe
kl∆ρmn dv = 0 (2.4)

which follows from (1.7) (for ∆ue
k and ∆we), we obtain∫

v

(aklmn ∆ρkl ∆ρmn + ∆εp
kl ∆σkl) dv = 0.

By virtue of (2.2), this relation holds only if ∆εp
kl ∆σkl = 0 and ∆ρkl = 0 everywhere in v, which implies [3] that the

residual stresses ρkl in v, the plastic zone vp, and the stresses σkl and σe
kl in vp are determined uniquely. Therefore,

in the region Sp that is the projection of vp onto the plane Ox1x2, the deflection w is determined with accuracy
up to a linear function of x1 and x2. If Sp is adjacent to the nonrectilinear part of the contour γ, on which the
deflection w is specified, the deflection is determined uniquely in the region Sp. If the function w = w(x1, x2) is
analytic in Sp, it can be continued to the entire region S [3].

As in [3], this elastoplastic problem reduces to finding the deflection w from the functional equation

w = F (w), F (w) = we(w) + w̃,

which can be solved by an iterative method:

wn+1 = F (wn) = wen + w̃ (2.5)

[wen = we(wn), n = 0, 1, 2, . . .] using the zeroth approximation w0 = w̃.
Thus, in each iteration we have the direct problem of finding the elastic “unbending” we = we(x1, x2) for the

known function w = w(x1, x2). This problem, which includes Eqs. (1.2) for specified loads Xk and q, the relations
σe

kl = bklmn(εmn − ε̃mn) = bklmnεe
mn implied by (2.3), where εkl and ε̃kl are given by (1.5), and the boundary

conditions on γ given above, has a unique solution because the difference of the two possible solutions ‖∆we‖ = 0,
as follows from (1.7) by virtue of (1.8) (i.e., ∆qe

1 ≈ ∆q = 0) and zero conditions on γ.
Following [3] and taking into account (2.4), it is easy to show that the sequence (2.5) converges to the desired

deflection w = w(x1, x2) in the same sense as in [3].
3. Viscoelastoplastic Problem. Let the quantities εN

kl from (1.3) be the sum of plastic and viscous
strains, whose rates depend on stresses and, possibly, on time:

ε̇N
kl = ε̇N

kl(σmn, t).

We assume that these functions satisfy the condition [2]

∆ε̇N
kl ∆σkl ≥ λaklmn ∆σkl ∆σmn, λ = const, λ > 0. (3.1)

We formulate a problem similar to that considered in [1, 2] for a plate in a kinematic, geometrically linear
formulation. It is required to find a function w∗ = w∗(x1, x2) such that the residual deflection satisfies the condition
w̃(x1, x2, t∗) = w̃∗ for the deflection w = ϕ(t)w∗ and displacements uk(x1, x2, t) = 0 (0 ≤ t ≤ t∗) at time t = t∗
after instantaneous removal of external loads Xk∗ = Xk(x1, x2, t∗) and q∗ = q(x1, x2, t∗) and elastic unloading. Here
w̃∗ = w̃∗(x1, x2) and ϕ(t) are specified functions such that ϕ(0) = 0 and ϕ(t∗) = 1.

We confine our attention to a viscoelastoplastic plate assuming that ækl = 0 in all formulas given above.
By virtue of the above assumptions, for the differences between the strains corresponding to two states for which
the residual deflections w̃

(i)
∗ (i = 1, 2) differ only slightly from w̃∗, we have relations of the form (1.6) for t = t∗,

namely:

∆εkl∗ = 0.5(∆uk∗,l + ∆ul∗,k + w̃∗,k∆w∗,l + w̃∗,l∆w∗,k)− z∆w∗,kl. (3.2)

(The formulas for ∆ε̃kl∗ are obtained from (3.2) by replacing ∆uk∗ and ∆w∗ by ∆ũk∗ and ∆w̃∗, respectively.)
Since w = ϕ(t)w∗ and uk = 0 for 0 ≤ t ≤ t∗, from (1.1) and (3.2) we obtain

∆εkl = ϕ2(t)∆γkl − zϕ(t)∆w∗,kl, ∆γkl ≡ 0.5(w̃∗,k∆w∗,l + w̃∗,l∆w∗,k),

∆εkl∗ = ∆γkl − z∆w∗,kl, ∆ε̇kl = ϕ̇(t)[2ϕ(t)∆γkl − z∆w∗,kl].
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It follows that

‖∆w∗‖2 = I2
1 (∆εkl∗) ≡

1
2

∫
v

bklmn ∆εkl∗ ∆εmn∗ dv = I2
2 + I2

3 ,

I2
2 =

∫
S

h

2
bklmn ∆γkl ∆γmn dS, I2

3 =
∫
S

h3

24
bklmn ∆w∗,kl ∆w∗,mn dS, (3.3)

‖∆ẇ‖2 = I2
1 (∆ε̇kl) = [ϕ̇(t)]2[4ϕ2(t)I2

2 + I2
3 ] ≤ 4[ϕ̇(t)]2‖∆w∗‖2 (0 ≤ t ≤ t∗).

By analogy with [2], from (1.3) we obtain

2İ4(∆σkl)I4(∆σkl) + I5(t) =
∫
v

∆ε̇kl ∆σkl dv ≤ 2I4(∆σkl)I1(∆ε̇kl),

I2
4 (∆σkl) =

1
2

∫
v

aklmn ∆σkl ∆σmn dv,

I5(t) =
∫
v

∆ε̇N
kl(t)∆σkl(t) dv (0 ≤ t ≤ t∗).

With allowance for (3.1) and (3.3), these relations yield

İ4 + λI4 ≤ 2|ϕ̇| ‖∆w∗‖, i.e., [I4 exp (λt)]• ≤ 2‖∆w∗‖ |ϕ̇| exp (λt).

Integrating this inequality with respect to time from zero to the current time t (0 ≤ t ≤ t∗) and taking into
account that ∆σkl|t=0 = 0 [since ϕ(0) = 0], we obtain

I4(∆σkl) ≤ β(t)‖∆w∗‖, β(t) = 2 exp (−λt)

t∫
0

|ϕ̇(t)| exp (λt) dt. (3.4)

Since ∆σkl = ∆σe
kl + ∆ρkl and relations (1.7) (for w̃ = w̃∗), (1.8), and (2.4) hold for t = t∗, we have [2]

I2
4 (∆σkl∗) = I2

4 (∆σe
kl∗) + I2

4 (∆ρkl∗) ≥ I2
4 (∆σe

kl∗) = ‖∆we
∗‖2.

Relation (3.4) yields

‖∆we
∗‖ ≤ β∗‖∆w∗‖, β∗ = β(t∗). (3.5)

Since ‖∆w∗‖ = ‖∆we
∗ + ∆w̃∗‖ ≤ ‖∆we

∗‖ + ‖∆w̃∗‖, relation (3.5) implies the inequality (1 − β∗)‖∆w∗‖
≤ ‖∆w̃∗‖, which ensures that for β∗ < 1 the solution of the problem is unique and the operator w∗ = w∗(w̃∗) is
continuous. The desired deflection w∗ can be obtained as the limit of a sequence of form (2.5), i.e.,

wn+1
∗ = we

∗(w
n
∗ ) + w̃∗ (n = 0, 1, 2, . . .), w0

∗ = w̃∗,

since the problem reduces to solving the functional equation w∗ = F1(w∗) ≡ we
∗(w∗)+ w̃∗. We note that for β∗ < 1,

the operator F1 is compressing [2].
We give some examples of the function ϕ = ϕ(t) provided that β∗ < 1. From (3.4) for ϕ(t) = t/t∗, we find

that β∗ = 2[1 − exp (−γ∗)]/γ∗, where γ∗ = λt∗; therefore, β∗ < 1 for γ∗ ≥ 2. In a more general case, using the
Cauchy–Bunyakowsky inequality, from (3.4) we obtain

β∗ ≤ 2æ∗ exp (−γ∗)
( t∗∫

0

exp (2λt) dt
)1/2

=
√

2 æ∗

[1− exp (−2γ∗)
λ

]1/2

<

√
2 æ∗√
λ

,

æ2
∗ =

t∗∫
0

(ϕ̇)2 dt.
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If, for example, ϕ(t) = (t/t∗)α (α > 1/2), then æ∗ = α/
√

(2α− 1)t∗ and to satisfy the condition β∗ < 1, it
is sufficient that γ∗(1−

√
1− 2γ−1

∗ ) ≤ 2α ≤ γ∗(1 +
√

1− 2γ−1
∗ ), which is possible for γ∗ ≥ 2.

We note that in the inequality of the form of (3.4) obtained in [2] for a similar geometrically linear problem,
β(t) is smaller than that in (3.4) by a factor of 2. Therefore, the corresponding constraints on the function ϕ = ϕ(t)
are weaker: for example, the inequality β∗ < 1 holds for any function ϕ = ϕ(t) which increases monotonically from
zero to unity (0 ≤ t ≤ t∗).

We also note that as in [2], the minimum value of β∗ from (3.5) corresponds to the relaxation mode of
deformation where ϕ(0) = 0, ϕ̇ > 0 (0 < t < t0), and ϕ = 1 (t0 ≤ t ≤ t∗) as t0 → 0; in this case, we have
β∗ = 2 exp (−γ∗). Consequently, the condition β∗ < 1 is possible only if γ∗ > ln 2 ≈ 0.693.
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